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DIGITAL MEASUREMENT OF DIFFERENTIAL TIME
DELAY OF PSEUDO RANDOM CODED SIGNAILS

INTRODUCTION

In this study ©f cislunar and interplanetary electron density
by radar techniques, it is frequently necessary to measure a group
time delay or the differential of time delay on two or more fre-
quencies. Though these measurements have been made successfully
using simple sinusoidal modulation of a radio frequency carrier,
it appears that important improvements can be achieved by the use
of pseudorandom codes as the modulating waveform. These codes can
be easily generated with linear feedback shift registers, and thus
schemes employing them are practical to implement. The well known
autocorrelation properties of pseudorandom codes have attracted
many investigators and considerable success has already been
achieved using these codes in space applications(l). Most appli-
cations have made use of analog demodulators and signal processing.

I————

In this paper we consider the problem of measuring differential
time delay by the use of binary cross correlation of two received
signals. Such an operation can be implemented with relative ease
compared to analog correlation, especially if processing is to
occur on a spacecraft. When both signals are very noisy, it
requires approximately 2,46 as much time as analog processing;
when one signal is clean, as would be the case in an absoiute

delay measurement, 2,02 as much time is needed.



We assume both signals are corrupted by stationary, white,
gaussian noise, bandlimited to the bit frequency of the pseudo-
random code, This is done for mathematical simplicity based on
digital sampling done once per bit. If the noise bandwidth is
larger, and hence independent samples can be made more frequently,

no change in any of the results will occur. A
f

DISCUSSION

We recall that a pseudorandom sequence is a sequence of zeros
and ones with the following well known prOperties:(a)

n

(1) It has length M =2 - 1, where n is a positive integer,

(2) 1t contains M%l zeros and M%l ones,

(3) 1It, together with its cyclic permutations and the all-zero
sequence of length M, forms a group code under the

operation of componentwise modulo two addition.

We will denote such a sequence as S(o) where

S(O) = (s;, 505 ..;sM) (1)

and shall denote the ith cyclic permutation as

§(1)

= (Si+1, Si+2, -...Si_l_M) (2)

where it is understood that all subscripts are taken modulo M,
such that, for example

sj+kM = 85 k = integer . (3)
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We note that each element of this group code is its own inverse.
The group property can be used to derive the autocorrelation
of the pseudorandom sequence,
Given

{x) , .
s\"/ for Kk # O, we have

(L #£#%k, £ #0)

The sum of S(O) and S(k) has a one in every place in which
S(O) and S(k) disagree and a zero in every place in which S(O)

and S(k) agree, We know that S(O) has E%l ones and
!%l zeros. Thus there is one more disagreement than agreement

between S(o) and S(k)' i.e.,

?

R(k) = -% k£0 (5a)
where M
R(k) = -lﬁ Z S, Sy (5b)
i=1
It is also clear that
rR(0) = 1. (5¢)



Thus the sequence has autocorrelation as shown below:
R(k)

Fig. 1: AUTOCORRELATION OF PSEUDORANDOM SEQUENCE

We will assume that we have demodulated information re-
ceived on two different carrier frequencies and thus must
process two signals:

rl(t) A, x(t) + nl(t) (6a)

]

r2(t) A, x(t + BT) + n2(t) (6b)

+
i

Here x(t) is a waveform switching between levels in
such a way that
+ 1
() = (DT drc v < e (1)

i.e., is a pseudorandom waveform with bit time T.




We also assume that £ is an integer with 0 < B <M. The

‘noises nl(t) and n2(t) are independent, stationary, zero-mean,

gaussian, white, and are bandlimited to ( - %T’ %T) with power
N N
spectral densities of 5 and Eg , respectively. Hence their
autocorrelations are given by(3)
N1 T
RI(T) = 57 sinc g (8a)
N2 T
R2(T) = 57 sinc o (8v)
where
. sin sx
sinc x = —— .
k2.9

Our object is to obtain a reliable estimate of f. This will
indicate differential group velocity of electromagnetic waves at
the two carrier frequencies. Our estimate will be obtained with
the system shown in Fig. 2. The signals rl(t) and r2(t) are
hard limited, yielding their parities. Upon digital delay of
sgn fre(t)] and logical processing in which the two signals
are compared once per bit, 1;(k) is obtained where we see that

MN

R(x) = 2 sgn [r (t  + JT) r(t  + 3T - kT)] (9)
j=1

where processing starts at time to and ends at time to + MNT.

We will define the estimated digital

[

wtocorrelation of r, (t)

and r2(t) in a natural manner as
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A A
RN(k) = R

(k) . (10)

B[

We should expect ‘g;(k) to have a maximum at k = g. Thus if
ﬁ;(k) is a consistent estimator, i.e., an estimate whose variance
can be made arbitrarily small as the time for estimation is
increased, we can determine {3 if we take N sufficiently large
and vary k.

Let us define

p, = probability that n, (t) > ’Al' at a fixed time t' (11a)

P, = probability that n2(t) > |A2‘ at a fixed time t' . (11b)

We note that p, is just the probability that the parity of rl(t')

is changed by noise; is just the probability that the parity

Po
of r2(t') is changed by noise. We now can easily calculate the
statistics of our estimate, since we are sampling at times sepa-

rated by integral multiples of T, at which the noise autocorre-

lations have zeros. Thus we only need use the stationary noise

probability density functions. From eq. (10) we write
MN
1 .
E[RN(k)] = = Z E{sgn [r; (£ +37) r2(t°+_]T—kT)]} (12)
j=1

When x(to+jT) and x(t°+jT—kT) have the same parity, the

expected value of a sample is

Pr{sample = 1) - Pr(sample = -1) = (1—2p1)(1—2p2)sgn(A1A2) (13a)



When x(to+jT) and x(to+jT—kT) have opposite parity, it is

Pr(sample = 1) - Pr(sample = —1)=+-(1-2p1)(1—2p2)sgn(A1A2) (13b)

Hence, from the autocorrelation of the sequence, we have

EFEN(B)] = (1—2p1)(1—2p2) sgn(AlAa) (1La)
and for k #£ 8
BR(K)] = -3 (1-2p)(1-2p,) sen(AA,) . (1kb)

A .
Thus the expected value of RN(k) is merely the autocorrelation

of the sequence scaled by the factor (1—2p1)(1-2p2) sgn(A1A2).

Since samples taken are independent, we have

MN
A 1 .2 . .
var[RN(k)] = (—Nﬁ-‘l) Z var {sgn[rl(to+JT) r2(to+JT—kT)]}
j=1
1 2 2
= % (1 - (1-2p)% (1-2p,) ] (15)
for any value of k. Hence our estimate is consistent.
We wish to compare the processing time required to that
of an analog estimate using a matched filter in which the
quantity of interest is
A 1 MNT p
SN(k) = INT . rl(t) r2(t—kT) dt . (16)



Such comparisons will be made for fixed ratios of mean to standard

deviation. If we define

E[Ry(x)]
Kd = (178')

{%ar[ﬁN(k)] /2

B8, (x)]

Ka ) {%ar[gk(k)]}l/2 ™)

we find that:

1) 1If both signals have low signal-to-noise ratios, i.e., if

N N K. 2
2 1l 2 2 d 1
Al << 57 and A2 << 5T then (—-Ka) = 318

2) If one signal-to-noise ratio is low and there is no

noise on the other channel, then

(ﬁ)2 I
K T 2.02 '
a
Ka.2
These results are derived in the appendix. We note that f_)
a

is the ratio of analog time to digital time, since means are

time independent and variances are inversely proportional to
processing time. Thus if both channels are noisy, 2.46 times

as much processing time is required for our scheme. This must

be balanced against relative simplicity of implementation. If
one channel is clean, almost exactly twice as much time is
required to go digital. For deep space probes where lightweight
instrumentation is of great importance, the scheme clearly can be
useful since increased processing time required will be unimpor-

tant in many practical situationms,
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APPENDIX

RATIO OF ANALOG TO DIGITAL PROCESSING TIMES

I. Two Noisy Channels

In this case we have

A
(1 -2p,) % /g 6—1 (a-1a)

A
(1-2p,) % E 5—2 (A-1b)

N N,
where 512 = -2% and 52 = 'é% . Hence,

(R (p)] = 225 (a-2)

Also

var[’l;N(B)] = %ﬁ f1 - (1-2p1)2]f1 - (1"292)2] '3% (A-3)

for low signal-to-noise ratios, since then P p2’.3 1/2 .

Now consider the analog estimate.
MNT
E(S (g)] = El=s= r (t) r (t-pT) at] = A A_ (A-})
N - MNT 0 1v 2 -T2

Interchanging expectation and integration which is valid for

bandlimited noise and finite integration time,
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var[gﬁ(g)]

MNT
E{[fM;—T fo r () ry(t-pT) dt]2}- A2

MNT MNT

- ((%212 f fo (A, 2x(t)x(s)n,(t)ny(s)

2 , \ AR ’ . " -
+ & 2x(t)x(s)ny(£)ny () + ny(t)m,(s)ay(t)ny(s)] dtds}

2
i T a2 < x(e)x(e) > Ry (t-s)
N 0 0 1 2
+ A22 < x(t)x(s) > Rl(t—s) + Rl(t—s) Rg(t—s)] dtds (A-5)

Here brackets denote time averages, and terms with zero expectation
have been dropped. Now, for i =1, 2, < x(t)x(s) > Ri(t-s) is

significant only for lt-sl < T. In this region we can write

< x(t)x(s) > R (t-s) = 6,°(1 - == (%) sinc £2] . (4-6)
i i T T
We also assume that MNT is large enough such that
MNT oo
”~
fo R, (t-s) R2(t—s) at ¥ f R, (t-s) R2(t-s) dt (A-7)

for essentially all values of s under consideration. In this case

2_ 2
G, 6
A 0. 2 -1 2
var(5 (8)] = —EMN [A 52 +A2 6,71 + S
2
6,6
~ _}_2_ -
T (A-8)
using the fact that(h):
1
[ sinc x dx = 1,18 (4-9)
-1
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Thus
K. 2

d 1
(g;) R

191

(A-10)

. One Noisy Channel and One Noiseless Channel

N
2 1
A1 <<§'f" N2=O
Now we have
A
2 1
-2p) =% 5
(1-2p,) =1
Hence
AA
2 12
E[RN(B)] = J= —EI'
Again
1
var[RN(B)] = I

For the analog estimate
E[SN(g)] = AA,

Now, however,

(A-11a)

(A-11b)

(a-12)

(a-13)

as before . (A-14)

1 MNT MNT o
var(s ()] = E 577 fo fo A" x(t)x(s)n (t)n, (s)dtds
= 9:%%5 A22 6, using eqn. (A-6) (A-15)
Hence
K, 2
(%) -z (316)
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